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1. Introduction

The minimum weight spanning tree (MinST) problem on finite 
graphs is a classic combinatorial optimization problem. The MinST 
problem has numerous applications [15,17,18,22], including as a 
subroutine in other algorithms on graphs [3] and heuristics [12,26]. 
MinST problems are also popular because they admit simple-to-
implement “greedy algorithms” that solve the problem efficiently. 
In this paper, we consider the maximum spanning tree (MaxST) 
problem for countably infinite graphs which can be viewed as 
models for underlying problems with indefinitely large graphs. We 
will present a greedy algorithm that arbitrarily well approximates 
a MaxST which will be shown to always exist. As we shall see, 
both of these claims fail for the MinST case for infinite graphs.

To an uninitiated researcher, one may be naturally presented 
with a maximum weight spanning tree (MaxST) problem instead of 
a minimum and search the literature in vain to find solutions to 
this problem. The reason is not that the MaxST problem is diffi-
cult or unstudied, instead, it is because it is easily converted to a 
MinST by reversing the signs of the edge weights and minimizing. 
Unlike the difference between the minimum capacity cut (MinCut) 
problem and the maximum capacity cut (MaxCut) problem (the 
minimum cut problem is well known to be the dual of the maxi-
mum flow problem, which is polynomially solvable in finite graphs, 
whereas the maximum cut problem is NP-hard to both solve and 
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approximate), the differences between the MinST problem and the 
MaxST problem on finite graphs are entirely cosmetic.

In this paper, we show that the situation can be completely 
different in infinite graphs. We consider a class of graphs with 
countably many nodes, and each node has at most finitely many 
incident edges. Moreover, we assume the edge weights are positive 
and the sum of weights is finite. In this setting, a greedy approach 
can be used to find a MaxST but a MinST may not even exist. If 
a MinST does exist, it may be unreachable by a greedy approach. 
Since edge weights are summable, they converge to zero towards 
the “outskirts” of the graph. Intuitively, a MinST may be unreach-
able by a greedy approach as we search in these “outskirts” for 
lighter and lighter edges and get “indefinitely distracted” without 
returning to explore other regions of the graph to form a span-
ning tree. By contrast, a MaxST can safely ignore the “outskirts” of 
light-weight edges until trees are greedily constructed on a grow-
ing family of finite subgraphs leading, eventually, to a MaxST.

More concretely, our greedy approach for computing a MaxST 
is a straightforward extension of Prim’s algorithm applied to infi-
nite graphs. When the graph has summable and strictly positive 
edge weights, it produces a sequence of spanning trees on finite 
subgraphs that converge to a MaxST in the limit (we make the 
notion of convergence precise later in the paper). Such solution 
convergence is a rare outcome in infinite-dimensional optimization 
problems where convergence to the optimal solution is usually dif-
ficult to guarantee.

To our knowledge, there are only two previous papers—[23] and 
[20]—that study the problem of constructing MinSTs and MaxSTs 
in infinite graphs (in fact, they study the problem in the more 
general setting of infinite matroids). These papers, however, gener-
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alize Kruskal’s algorithm to the infinite setting, whereas we extend 
Prim’s algorithm. While their approach can also find MaxSTs in our 
setting (we describe how their ideas can be applied to our setting 
in Section 4), our approach has two advantages over Kruskal’s ap-
proach.

These two advantages are (i) a generalized Prim’s approach re-
quires significantly less data about the graph at each iteration, and 
(ii) the iterates of Prim’s algorithm are trees and therefore consti-
tute optimal solutions of MaxSTs on finite subgraphs of the original 
graph. By contrast, the iterates of a generalized Kruskal’s approach 
are typically forests and not trees. This distinction can be impor-
tant in applications of spanning tree problems—like establishing 
communication links along edges from a source to nodes—where 
disconnected partial solutions lead to links that are not connected 
to the source. These two advantages are explored in more detail in 
Section 4.

It is also worth noting that there is extensive literature on al-
gorithms on infinite graphs in other contexts (see, for instance, 
[2,5,13,21]). Several references examine the properties of spanning 
trees in the limit of finite random graphs (see, for instance, [1,4]), 
but these graphs enjoy special properties conferred by Poisson spa-
tial processes.

The rest of the paper is organized as follows. In Section 2, we 
formally introduce the problem of finding minimum and maximum 
weight spanning trees and state our key assumptions. In Section 3, 
we discuss greedy algorithms for solving the minimum-weight and 
maximum-weight spanning tree problems, emphasizing the differ-
ences between the two. There we show our main result: a Prim’s 
algorithm always finds a MaxST in the limit. Section 4 provides 
more detail on how our work relates to the earlier studies of [23]
and [20].

2. The minimum and maximum spanning tree problems

We begin by introducing the general class of infinite graphs we 
consider.

2.1. Basic definitions

Let G = (V, E) denote an undirected graph, with node set 
V = {1, 2, . . . } and edge set E, which is a subset of all possible 
unordered pairs {i, j}, where i, j ∈V with i �= j. The graph has an 
edge-weight function w : E →R where we denotes the weight of 
edge e ∈ E.

Let I(i) denote the set of nodes adjacent to node i; that is, 
I(i) := { j ∈V : {i, j} ∈ E}. The degree of node i in G is the cardinal-
ity of I(i). A graph is locally finite if every node has finite degree. A 
path in G is a finite sequence of distinct nodes i1, i2, . . . , in , where 
{ik, ik+1} ∈ E for k = 1, . . . , n − 1. A ray is an infinite sequence of 
distinct nodes i1, i2, . . . , where {ik, ik+1} ∈ E for k = 1, 2, . . . . Two 
nodes i and j are connected in G if there exists a path starting 
with node i and ending with node j. The graph G is connected if 
all nodes i and j in G are connected. We make the following as-
sumption throughout the paper.

Assumption 1. The graph G is locally finite and connected. �

The results in this paper hold if local finiteness is relaxed, but 
for ease of exposition we stick with this assumption. Indeed, much 
of infinite graph theory is examined in the locally finite case, 
which is easier to visualize (see, for instance, Chapter 8 in [13]).

A cycle in G is a finite sequence of nodes i1, i2, . . . , in, i1, where 
i1, i2, . . . , in is a path and {i1, in} ∈ E. A double ray consists of 
a node i with two distinct rays, that is, rays (i, i1, i2 . . . ) and 
(i, j1, j2, . . . ), where all intermediate nodes ik and j� are distinct 
for all k and �.
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Let H be a subgraph of G and let V(H) and E(H) denote the 
set of nodes and edges in H , respectively. In this paper, we restrict 
our attention to subgraphs with no isolated nodes; that is, for ev-
ery node i ∈V(H) there exists an edge {i, j} ∈ E(H) for some node 
j ∈V(H). Throughout we often refer to a subgraph H by its set 
E(H) of edges since the set of nodes is implicit once the edges 
are defined due to this restriction on the types of subgraphs we 
consider.

A forest F of G is an acyclic subgraph of G; i.e., a subgraph of 
G without cycles. A connected forest is a tree. If a subgraph of G
has node set V, it is said to span G . A connected spanning forest 
of G is called a spanning tree. The set of all spanning trees of the 
graph G is denoted T .

Remark 1. Other papers that study infinite graphs may define trees 
differently. For instance, the papers [24,25] study network flow 
problems on directed graphs. They say two nodes i and j are con-
nected at infinity if both lie on directed rays to infinity, even if there 
is no finite path between these nodes. These papers talk about 
trees as graphs that do not contain either cycles or double rays, 
but allow connectivity “at infinity” between nodes. By contrast, 
our trees allow double rays (while disallowing cycles) but must 
be (finitely) connected. For a detailed discussion of the different 
definitions of spanning trees in infinite graphs, see [14]. �

2.2. On the existence of spanning trees

We now turn to our problems of interest. The weight w(T ) of a 
spanning tree T of G is the sum of the weights of the edges of T , 
i.e.,

w(T ) �
∑

e∈E(T )

we. (1)

We first define the more commonly stated problem of finding a 
minimum-weight spanning tree of G , i.e., solve

wmin � min{w(T ) | T ∈ T }. (MinST)

We call any optimal solution of problem (MinST) a minimum 
spanning tree (MinST). A closely related problem is solving the 
maximum-weight spanning tree problem, i.e., solve

wmax � max{w(T ) | T ∈ T }. (MaxST)

We call any optimal solution of problem (MaxST) a maximum 
spanning tree (MaxST).

These problems may not be well-defined if either the graph 
has no spanning trees or spanning trees of minimum or maximum 
weight do not exist. Regarding the existence of spanning trees, the 
following classical result shows they always exist in our setting.

Proposition 1 (Proposition 8.1.1 in [13]). Any graph that is locally finite 
and connected (Assumption 1) contains a spanning tree.

Although spanning trees exist, there may be no lower bound 
on their weight. It is straightforward to construct an infinite graph 
with an infinite sequence of spanning trees with strictly decreas-
ing weights when the graph admits edges with negative cost. 
Another worrying setting is one where all spanning trees have in-
finite weight, which happens when the weights of edges are not 
“controlled” in some way. In this case, all spanning trees are de-
generately both “minimal” and “maximal”, making the MinST and 
MaxST problems uninteresting. We make the following assumption 
throughout to avoid these exceptions.
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Fig. 1. A graph with a MaxST but no MinST (see Example 1).

Assumption 2. The weight function w : E → R has we > 0 for all 
e ∈ E and 

∑
e∈E we < ∞. �

If we label the countably many edges in E by w� for � =
1, 2, . . . , then Assumption 2 becomes w = (w1, w2, . . . ) ∈ �1
(where �1 is the vector space of absolutely summable sequences) 
with w > 0.

Later, we show that this assumption (combined with Assump-
tion 1) suffices to establish the existence of a MaxST. However, the 
following example illustrates that a MinST may not exist.

Example 1. Consider the infinite ladder graph in Fig. 1, with top 
and bottom rays of decreasing weight edges connected by infinitely 
many rungs with decreasing weights. The MaxST has weight 3, 
consisting of the left-most rung of weight 1 connecting the top 
and bottom rays of the ladder (each of which has weight 1). A 
spanning tree of weight 2 1/4 is drawn in non-dashed edges in 
the figure. One can similarly construct spanning trees of weight 
2 1/8, 2 1/16, etc. Thus, there is a sequence of spanning trees whose 
weights converge to 2. However, no spanning tree has weight 2 or 
less. Therefore, a MinST does not exist. �

3. Greedy algorithms

We just provided an example where a MinST may not exist in a 
graph that satisfies Assumptions 1 and 2. In Section 3.1, we show 
that even when a MinST does exist, it may not be discoverable by 
an infinite extension of Prim’s algorithm. Later in Section 3.2, we 
show that a MaxST always exists and can be found using Prim’s 
algorithm.

3.1. Greedy algorithms for minimum spanning trees

There are multiple greedy approaches to finding MinSTs in fi-
nite graphs, including algorithms attributed to Prim, Kruskal, and 
Sollin (see, for instance, Chapter 13 of [3]). In the infinite case, 
these algorithms perform differently. For instance, Kruskal’s algo-
rithm seeks a minimum-weight edge in the entire graph in the 
first iteration. Not only does identifying a minimum-weight edge 
in an infinite graph require infinite work, but the operation may 
not even be well defined since the minimum of edge weights need 
not exist. By contrast, each iteration of the natural extension of 
Prim’s algorithm to infinite graphs is finitely implementable since 
it always considers finitely-many edges in each iteration, as we de-
tail now.

Algorithm 1 Prim’s algorithm for MaxST (resp. MinST) in spanning 
trees in infinite graphs.
1: Input: A locally finite and connected graph G = (V, E) with edge weights.
2: Initialize: Initialize a tree T with one node, chosen arbitrarily from G .
3: while T is not spanning do
4: Append an edge: Append to T the maximum-weight (resp minimum-weight) 

edge emanating from T (that is, having one node in T and one outside of T ).

Prim’s algorithm (stated in Algorithm 1) produces a sequence of 
non-spanning finite trees {T n}, one for each pass of the while loop, 
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Fig. 2. A graph satisfying Assumptions 1 and 2 where a MinST exists that cannot be 
found by Prim’s algorithm (see Example 2).

where T 1 is the initial single-node tree, T 2 is the tree at the end 
of the first iteration of the while loop, etc. The algorithm is finitely 
implementable since each iterate has finitely many nodes, and so 
because each node has finite degree, only finitely many edges need 
to be considered when finding the maximum or minimum weight 
edge.

The challenge with Prim’s algorithm is that the limiting tree it 
creates may not be spanning.

Example 2. Consider the graph in Fig. 2. The graph itself is a span-
ning tree with total weight (1 + 1/2 + 1/4 + · · · ) + (1/3 + 1/9 +
· · · ) = 2 1/2. Hence, the minimum-weight spanning tree is unique 
with weight 2 1/2. However, if Prim’s algorithm is started with, for 
example, the lower-left node, it fails to span all nodes in the graph. 
Indeed, at every iteration, it adds the next horizontal edge avail-
able, and never adds any of the vertical edges. �

3.2. A greedy algorithm for maximum spanning trees

We now show that Prim’s algorithm always finds a MaxST in 
any graph satisfying Assumptions 1 and 2.

Theorem 1. Let G be an infinite graph that is locally finite and connected 
(Assumption 1) and has positive and summable weights (Assumption 2). 
Let T n be the nth tree generated by Prim’s algorithm for a maximum 
weight spanning tree and let

T ∗ =
∞⋃

n=1

T n, (2)

where the operator ∪ merges nodes and edges. The subgraph T ∗ is a 
MaxST. In particular, the graph G has a MaxST.

Proof. First, we claim that T ∗ is a forest. Observe that T ∗ has no 
finite cycles since any finite cycle of T ∗ would eventually be con-
tained in T n while T n being a tree is acyclic. This implies that T ∗
is a forest.

Second, it is straightforward to see that T ∗ is connected. Let i
and j be two arbitrary nodes in T ∗ . Let ni be the smallest value 
of n such that i is in T n . Define n j similarly. Without loss, assume 
ni < n j . At iterations n j , there is a node k in tree T n j−1 so that 
{k, j} ∈ T n j . If k = i then we are done. Otherwise, since the iterates 
of Prim’s algorithm are a growing sequence of trees, i is a node in 
T n j−1. Moreover, since T n j−1 is connected, there is a path P from 
i to k in T n−1. Then P ∪ {k, j} is a path connecting i and j.

Third, we observe that T ∗ is a spanning tree by arguing that 
every node i in G is in T n for some n. Suppose not for node i; i.e., 
i is not in T n for any n. Let Pi be a finite path in G from node 
1 to node i. Let i∗(i) be the last node along this path that lies in 
T ∗ . The weight of the edge out of node i∗(i) along the path to i is 
strictly greater than 0 by assumption and was eligible to be added 
to T n for sufficiently large n but was not. However, the weights of 
edges added to T n decrease to 0. This contradicts the requirement 
to add the largest weight edge to T n in step 4 of Prim’s algorithm.

Fourth, we show that T ∗ has maximum weight. Let S be any 
spanning tree of G . Let Gn be the subgraph of G spanned by the 
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nodes of T n . Note that T n is a MaxST for Gn since Prim’s algorithm 
produces a MaxST on the finite graph Gn . This follows from the 
classical properties of Prim’s algorithm on finite graphs. Let F n be 
the forest of edges consisting of the edges of S that are contained 
in Gn . Since edges can always be added from Gn to extend F n to a 
spanning tree Sn of Gn , we have

w(F n) ≤ w(Sn) ≤ w(T n)

for all n, where w(H) is the total weight associated with the edges 
of subgraph H as defined in (1). Since every node in G is eventu-
ally in T n , we have G = ∪∞

n=1Gn and S = ∪∞
n=1 F n . Then, since edge 

weights associated with G are summable, we have

w(S) = lim
n→∞ w(F n) ≤ lim

n→∞ w(T n) = w(T ∗). (3)

Since S was an arbitrary spanning tree of G , we conclude that T ∗
is a MaxST of G . �

It is immediate from (3) that we have optimal value conver-
gence of the iterates of Prim’s algorithm, namely that w(T n) →
w(T ∗) as n → ∞ and in fact w(T n) monotonically converges to 
w(T ∗). The sequence of trees T n converges to the tree T ∗ in the 
following sense: a sequence of subgraphs Sk of a graph G converges
to a subgraph S in G if there is a positive integer Ke for each edge 
e ∈ E so that for all k ≥ Ke we have e ∈ Sk if e ∈ S while e /∈ Sk if 
e /∈ S . Indeed, for every edge e ∈ T ∗ , Ke is the minimum value of 
n such that e ∈ T n . That is, an edge e enters T n for some n only 
when e lies in T ∗ and this edge stays in all remaining iterates. For 
additional discussion of topologies on infinite graphs see [16].

We can say more about this value Ke . Without loss of opti-
mality, let node 1 be the initial node of G for Prim’s Algorithm. 
Let T ∗ be the MaxST delivered in the limit by Prim’s Algorithm 
(as defined in (2) above). For any edge e ∈ T ∗ , let p∗(e) be the 
unique path in T ∗ from node 1 up to (and including) edge e. Let 
w∗(e) = mine′∈p∗(e) we′ > 0 be the minimum weight of an edge 
in the path p∗(e). For every positive real number γ , let E(γ ) be 
the set of edges in G with weights greater than or equal γ . By 
Assumption 2 the set E(γ ) is finite. Let N(γ ) denote the (finite) 
cardinality of E(γ ).

Lemma 1. Let e ∈ T ∗ . Then e ∈ T n for all n ≥ N(w∗(e)). That is, Ke ≤
N(w∗(e)).

Proof. Consider the set of edges E(w∗(e)). Since every edge along 
the MaxST path p∗(e) to edge e ∈ T ∗ has weight at least w∗(e)
and one of these edges in p∗(e) is a candidate for adding in every 
step n of Prim’s Algorithm before all of p∗(e) has been formed in 
T n , Prim’s algorithm only adds edges from E(w∗(e)) while p∗(e) is 
being formed. Since there are at most N(w∗(e)) edges in E(w∗(e)), 
the path p∗(e) (and, in particular, the edge e) must be added in 
the first N(w∗(e)) steps of Prim’s algorithm. That is, e ∈ T N(w∗(e)) . 
Since edges are only added to the iterates T n (and never removed) 
in the execution of Prim’s algorithm, we conclude that e ∈ T n for 
all n ≥ N(w∗(e)). �

The following example helps illuminate the result in Lemma 1
in a context where the weights of the edges of the graph decay 
geometrically.

Example 3. Suppose G is a locally finite and connected graph with 
edges labeled � = 1, 2, . . . . Suppose, in addition, that the edge 
weights are disciplined by a discounted upper bound as follows: 
for some b > 0 and 0 < δ < 1 we have

w� < bδ� (4)
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for all � = 1, 2, . . . . Clearly, this graph satisfies Assumption 2 and so 
by Theorem 1, a MaxST T ∗ (given by (2)) exists and can be found 
by Prim’s algorithm. We now show that we can determine whether 
a given edge e is in T ∗ by only considering a finite subgraph whose 
size is a function of w∗(e), b, and δ.

Let γ be a positive real number and let L(γ ) be the L satis-
fying bδL = γ . Note that w� ≤ bδ� ≤ bδL(γ ) = γ for all � ≥ L(γ ), 
where the first inequality follows from (4). Observe that E(γ ) ⊆
{1, 2, . . . , L(γ )} since only those edges � with � ≤ L(γ ) are can-
didates to be in E(γ ). Recall that E(γ ) is the set of edges of G
with weights greater than or equal γ . Hence, we can conclude that 
N(γ ) ≤ L(γ ).

Note that we have δL(γ ) = γ /b or L(γ ) = logδ(γ /b). By 
Lemma 1, we know that if e ∈ T ∗ then e ∈ T n for n ≥ N(w∗(e))
where N(w∗(e)) ≤ L(w∗(e)) = logδ(w∗(e)/b). That is, e ∈ T n for 
n ≥ logδ(w∗(e)/b).

The quantity logδ(w∗(e)/b) is computable in finite time for ev-
ery edge e as a function of w∗(e). �

Note that edge e ∈ T n at step n for every n is based on the 
topology and weights associated with the finitely many edges em-
anating from the tree T n . This data, together with that contained in 
T n itself, serves as a type of forecast horizon prominent in planning 
horizon research [6,11,7–9]. That is, edge e is guaranteed to be a 
part of a MaxST independently of any unforecasted data beyond 
the tree T n and the edges emanating from it. Thus, for example, 
MaxST can be implemented sequentially as we forecast demand 
and supply data without the necessity of reworking previous builds 
of trees.

4. Comparison with existing work

In the introduction, we briefly mentioned two closely related 
papers to our work: [23] and [20]. These papers develop algo-
rithms to find the equivalent of MinSTs and MaxSTs in infinite 
matroids. These algorithms find these objects only under certain 
conditions, as specified in these papers. For brevity, we will not 
introduce the matroid framework in this paper to make these con-
ditions precise. Rather, in order to compare their results to ours, 
we will briefly describe their results in the language of infinite 
graphs used in this paper.

[23] and [20] develop a generalized version of Kruskal’s algo-
rithm for finding spanning trees. The idea of Kruskal’s algorithm 
is roughly as follows: find the maximum (resp. minimum) weight 
edge in the graph, and add it to a growing forest, ensuring that 
no cycles are introduced as we proceed. For the algorithm to be 
finitely implementable, the task of finding edges with maximum 
(resp. minimum) weight in the graph needs to be achievable in fi-
nite time. In the case of finding MinSTs, it’s possible that no such 
minimum weight edge exists.

For the MaxST problem under our assumptions, a maximum 
weight edge can always be found. Let’s briefly explore why this is. 
Let � be the label of an arbitrary edge not added yet to the growing 
forest (using the labeling of edges defined in the paragraph after 
Assumption 2). Since the edge weights are positive and summable, 
there exists an edge labeled �′ such that wm ≤ w� for all m ≥ �′ . 
Then, the maximum weight edge not in F can be chosen among 
the edges in the finite set {1, . . . , � − 1, �, � + 1, . . . , �′ − 1, �′}. In 
other words, a maximum weight edge can be found in finite time.

Let’s now compare this with what happens in our generaliza-
tion of Prim’s algorithm. First, the information required to compute 
iterates is much less in Prim’s algorithm than in Kruskal’s. Observe 
that line 4 of Prim’s algorithm can be executed by only searching 
the finitely many edges emanating from the tree iterate T . Given 
knowledge of T , the number of edges that need to be considered 
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is known—at most the sum of degrees of the nodes in T . By con-
trast, although finding an edge to add in Kruskal’s algorithm can 
be achieved in finite time, without further assumptions on the 
weights (as we did in Example 3) we cannot give a clear bound 
on how far into the graph we need to explore. Thus, while both 
Prim and Kruskal are greedy, Prim is greedy in a myopic way by 
finding heavy edges early in the graph.

This raises a question of how input is provided to the two al-
gorithms. Since the graph is infinite, it is not possible to input all 
of the data in the graph in finite time. A finite subset of the data 
must be “streamed” to the algorithm as it proceeds. This raises 
the consideration of a streaming model of computation [19,10]. We 
will not go into the fine details of streaming complexity here, ex-
cept to say that the informational differences between Prim’s and 
Kruskal’s algorithms imply that Prim’s can work when a much 
smaller amount of finite data is streamed to the algorithm (the 
data on edges incident with the current tree iterate). Alternatively, 
Kruskal’s algorithm requires forecasting data without an a priori
upper bound for recursive determination of maximal weight edges.

This brings us to a separate point. Whereas the iterate forests 
of Kruskal’s algorithm can be disconnected, the iterates of Prim’s 
algorithm are always trees. Thus, if our infinite extension of Prim’s 
algorithm is finitely terminated, the result is a spanning tree on the 
finite graph so far explored by the algorithm. This serves as a par-
tial optimal solution that can be implemented as it is constructed. 
This distinction may be important in rolling horizon applications 
of spanning tree problems—like establishing communication links 
along edges from a source to nodes—where disconnected partial 
solutions recommend making links that are not connected to the 
source.
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